Adaptive Speed Observer using Artificial Neural Network for Sensorless Vector Control of Induction Motor Drive

نویسندگان

  • Mokhtar Zerikat
  • Soufyane Chekroun
چکیده

This paper presents an adaptive speed observer for an induction motor using an artificial neural network with a direct field-oriented control drive. The speed and rotor flux are estimated with the only assumption that from stator voltages and currents are measurable. The estimation algorithm uses a state observer combined with an intelligent adaptive mechanism based on a recurrent neural network (RNN) to estimate rotor speed. The stator and rotor resistances are estimated by a simple Proportional-Integrator (PI) controller, which reduces sensitivity to variations, due essentially to the influence of temperature. The proposed sensorless control scheme is tested for various operating conditions of the induction motor drive. Experimental results demonstrate a good robustness against load torque disturbances, the estimated fluxes and rotor speed converge to their true values, which guarantees that a precise trajectory tracking with the prescribed dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Current-Based Output Feedback Sliding Mode Control for Speed Sensorless Induction Machine Drive Using Adaptive Sliding Mode Flux Observer

This paper presents a new adaptive Sliding-Mode flux observer for speed sensorless and rotor flux control of three-phase induction motor (IM) drives. The motor drive is supplied by a three-level space vector modulation (SVM) inverter. Considering the three-phase IM Equations in a stator stationary two axis reference frame, using the partial feedback linearization control and Sliding-Mode (SM) c...

متن کامل

Speed Observer Design for Linear Induction Motor Drives

In this paper, a neural network model reference adaptive system speed observer is designed, which can be used in speed control of linear induction motors (LIMs). Dynamical equations of LIM have been considered accurate. In other words, the end effect and the electrical losses of the motor have been included in the motor equivalent circuit. Then equations of the reference model and adaptive mode...

متن کامل

Sensorless Speed Control of Switched Reluctance Motor Drive Using the Binary Observer with Online Flux-Linkage Estimation

An adaptive online flux-linkage estimation method for the sensorless control of switched reluctance motor (SRM) drive is presented in this paper. Sensorless operation is achieved through a binary observer based algorithm. In order to avoid using the look up tables of motor characteristics, which makes the system, depends on motor parameters, an adaptive identification algorithm is used to estim...

متن کامل

Robust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers

In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...

متن کامل

Speed Estimation Using Neural Network in Vector Controlled Induction Motor Drive

This paper presents a speed estimation method using neural networks (NN) in a vector controlled (VC) induction motor drive. The estimation algorithm is implemented using a Jordan recurrent NN structure where training of the NN is done online using back-propagation algorithm. Two back emf models are used in order to realize the reference and the adaptive models from which depending upon the spee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012